PDMS Films for Printed Electronics – Methods and Advancements

February 15, 2018 Victoria Tran

DELPH®N

Device Protection Solutions

- Manufactures proprietary polymers and films
- Used to protect, process and transport fragile, high value devices

Specialty Printing

 Service provider that offers highly specialized printing capabilities

Cleanroom Tapes & Labels

 Manufactures specialty adhesives and elastomers for demanding cleanroom applications

Goal for FHE: Develop specialty substrates for flexible and stretchable electronics

Outline

- Properties & uses of silicones
- Characterizing challenges with silicones
- Overcoming challenges with silicones
- Continuing efforts in silicone films for printed, flexible and stretchable electronics

Silicone - Unique and Versatile

- Flexible
- Stretchable
- Easy to Process
- Good chemical resistance

Silicone in electronics

- Wide operating temperature range from -40 to +300°C
- Excellent electrical properties
 - Naturally insulative
 - Dope for conductivity
- UV resistance
- Vibration Absorbing

Resistance to humidity and

water

Silicone for Medical Devices

- Biocompatible
- Physiologically Inert

Oxygen Permeability

Silicone provides the necessary oxygen permeability for metabolic and biological processes

Silicone is Soft

TPUs & Elasticity

TPUs & Elasticity

FHE & Elasticity

Silicones are Elastic

Silicones are Heat Resistant

Challenges with Silicone

- Low Energy
- Low Energy Residue

- Poor surface wetting
- Poor ink adhesion
- Poor device bonding

Silicone Residue Induces Dewetting

Ink dewets

Ultra-Clean Silicone

Positive control

Test sample

Standard Silicone

DGL film

- DGL film minimizes ink dewetting due to residue
- Can we quantify how much residue induces dewetting?

QCM for Residue Analysis

QCM for Residue Analysis

No Residue with DGL Films

Surface Energy - Silicone

Oxygen Plasma Treatment

H₂ Plasma Treatment

Ink Adhesion

Post Stress Testing With Tape

No Ink Adhesion

Good Ink adhesion

Screen Printed

Ink Adhesion Summary

Treatment	Days of treatment Effectiveness	Ink Adhesion (EMS-Cl-1036)	Comments
UV Ozone	1	Good	Treatment <u>not</u> effective after ink cure
O ₂ Plasma	3	Good	Treatment <u>not</u> effective after ink cure
H ₂ Plasma	>7	Good	Treatment remains effective after ink cure

Continued Challenges

- Treatment Equipment and Time Availability
- Film handling
 - Soft
 - Film Support
 - Release Properties of film, coversheet and substrate
- Post printing proceses
- Goal: Work with partners interested in unique silicone and other substrates

Delphon Silicone Offerings

POLYCARBONATE COVERSHEET Silicone Film **POLYETHYLENE SUBSTRATE**

POLYETHYLENE COVERSHEET Silicone Film POLYESTER **SUBSTRATE**

POLYETHYLENE COVERSHEET Silicone Film **Bonding Agent POLYESTER SUBSTRATE**

Optional PSA

	DGL	PF	WF
Composition	Silicone	Silicone	Silicone
Appearance	Transparent	Transparent	Grey, Translucent
Silicone Thickness	1.5 mil, 6.5 mil, 17.0 mil	1.5 mil, 6.5 mil, 17.0 mil	1.5 mil, 6.5 mil, 17.0 mil
Coversheet	Polycarbonate, 5 mil	Polyethylene, 1 mil	Polyethylene, 1 mil
Substrate	Polyethylene, 4 mil	Polyester, 5 mil	Polyester, 5mil
Hardness (Shore A)*	32-50	32-50	32-50
Tensile Strength (MPa)*	6.7	6.7	6.7
Ultimate Elongation %*	>140	>140	140
Hysteresis**	<1%	<1%	<1%
Use Temperature	-40°C to 220°C	-40°C to 220°C	-40°C to +150°C
			Bonded to substrate. Available with optional pressure sensitive
Features	Ultraclean	Peelable	adhesive backing

Summary

- Silicone is a versatile substrate
 - Excellent biocompatibility, softness, and elasticity
- Learnings
 - Silicone residue and low energy potential problem for ink adhesion
 - Ultra-clean DGL can be a solution
 - Surface treatments have varying degrees of efficacy
- Continued challenges
 - Treatment availability and time
 - Film handling
- Goal: Work with partners to develop unique substrates for their products

Acknowledgements

- Joey Flores Automation specialist
- Christopher Lundeen Chemist

Contacts:

- Victoria Tran Research and Development Director vtran@delphon.com
- Darby Davis VP of Sales & Marketing darby@gelpak.com
- Jennifer Nunes Director of Marketing jnunes@delphon.com
- Rajesh Varma CTO- rvarma@delphon.com
- Jeanne Beacham CEO jeanne@delphon.com

Thank you

